The Acinetobacter Nightmare: Mechanisms and Clinical Implications

> Yohei Doi, MD, PhD University of Pittsburgh Fujita Health University

Antimicrobial Resistance Research and Stewardship Conference January 17, 2018

Disclosures

- Advisory Board
 - Meiji
 - Roche
 - The Medicines Company
- Research Grant
 - Accelerate Diagnostics
- Clinical trials
 - Shionogi

Objectives

- Understand trends in antimicrobial susceptibility of *Acinetobacter baumannii*
- Review the key resistance mechanisms
- Review new treatment modalities in the pipeline

Introduction

• Acinetobacter spp.

- A group of genetically related non-lactose-fermenting, oxidase-negative, gram-negative coccobacilli
- Most species are environmental and non-pathogenic
- Acinetobacter baumannii complex
 - The clinically significant group of species that includes four "genomospecies"

Species identification

Tends to be drug-resistant

- A. baumannii causes
 - Ventilator-associated pneumonia
 - Bacteremia
 - Wound infection
- Risk factors
 - Antibiotic use (especially carbapenems)
 - Catheters (intravenous, urinary)
 - Severity of illness
 - Duration of hospital stay
 - ICU stay

- Outbreaks are difficult to control
 - Resistance to desiccation
 - Aerosolization
 - Antimicrobial resistance

THE WALL STREET JOURNAL. ≡

f

AA

...

'Superbugs' That Strike the Sickest Patients

By LAURA LANDRO Updated Oct. 1, 2008 12:01 a.m. ET

In hospitals' war against drug-resistant superbugs, a class of bacteria once thought to be fairly benign is emerging as a deadly threat to the sickest and most vulnerable patients. The scourge -- known as gram-negative bacteria -- is throwing a new wrench into efforts to contain the spread of deadly infections.

Amid more than 1.7 million infections annually in hospitals, prevention efforts have been aimed at the most widespread organisms, like the staph infection MRSA and others in the so-called gram-positive category. These can still be thwarted by antibiotics such as vancomycin.

But some of these bugs' wily cousins -- which don't pick up the purplish dye used in the test to distinguish them from gram-positive bacteria -- are becoming ultra-resistant. The extra outer membrane that rejects the stain also gives them additional armor against antibiotics. Some also produce an enzyme, known as ESBL, that enables them to break

• A. baumannii is extremely desiccation-resistant

Bethany Townsend, unpublished data

- A. baumannii can aerosolize
 - Trauma ICU in a Florida hospital with a longitudinal outbreak
 - 11/21 (52.4%) of air cultures grew A. baumannii in rooms occupied by A. baumannii-positive patients
 - 0/25 for A. baumannii-negative patients (p < 0.0001)

-	-	•	-	=	-	-	-	-		-	-			1
÷												-		-
i	-	-	-	-	-	-	E	-	-	-	-		-	
-	=	=	-	=		Ξ	H	а	н	Ξ	E	÷	=	
-	-		H	H		H		H	H	E	H	H		-
-			H	H		H	٨	H	H	H	H	R	Ξ.	
A			H	H		H	۸		H	H	ı	a	Ξ.	1
		-			-					-	10			

Munoz-Price LS, et al. Crit Care Med 2013;41:1915 Figure 3. Pulse field gel electrophoresis on air and clinical isolates. (1–9) Environmental *Acinetobacter baumannii* isolates; all from air samples except for line 3 that corresponds to the isolate obtained after swabbing an intake air duct (10–12) Carbapenem-resistant *A. baumannii* clinical isolates from patients present in the unit on the day air cultures were performed. Isolates 7, 8, and 9 corresponded to the air of the patients with clinical isolates 10, 11, and 12, respectively.

Aerosolization of *Acinetobacter baumannii* in a Trauma ICU*

L. Silvia Munoz-Price, MD^{1,2,4}; Yovanit Fajardo-Aquino, MD⁴; Kristopher L. Arheart, EdD^{2,5}; Timothy Cleary, PhD⁶; Dennise DePascale, MT⁴; Louis Pizano, MD³; Nicholas Namias, MD³; Jesabel I. Rivera, BS⁷; Jessica A. O'Hara, MPH⁷; Yohei Doi, MD, PhD⁷

Objective: To establish the presence of air contamination with Acinetobacter baumannii in the trauma ICU. Design: Point prevalence microbiological surveillances. Settings: A 1,500-bed public teaching hospital in the Miami metro area.

Patients: Trauma ICU patients.

Conclusions: Aerosolization of A. baumannii in the ICUs is a concern, and its role in the transmission of this organism among patients should be further clarified. (*Crit Care Med* 2013; 41:1915–1918)

Key Words: Acinetobacter species; air contamination; ICU

A. baumannii ranked 5th as the causative organism of igodolventilator-associated pneumonia (6.6%) in 2009-2010; its rank dropped to below 15th in 2011-2014

> **VAP** pathogens 2009-2010

VAP pathogens 2011-2014

Sievert DM, et al. Infect Control Hosp Epidemiol 2013;34:1 Weiner LM, et al. Infect Control Hosp Epidemiol 2016;37:1288

Evolution of resistance in A. baumannii

- A. baumannii was not always MDR/XDR
 - Herellea vaginicola
- Early 1970s
 - "treated successfully with gentamicin, minocycline, nalidixic acid, ampicillin, or carbenicillin"
- By early 1990s
 - "many ... are resistant to ... aminopenicillins, ureidopenicillins, ... cephalosporins, most aminoglycosides..."
 - "Imipenem remains the most active drug"
- 1991-1992
 - Outbreak of imipenem-resistant A. baumannii in Queens, NY

Bergogne-Bérézin E, Towner KJ. Clin Microbiol Rev 1996;9:148 Go ES, et al. Lancet 1994;344:1329

"International Clones" predominate

- MDR is accounted for by International clones (ICs) 1, 2 and 3
- Propagation of MDR in the 2000s likely represented replacement of indigenous strains by epidemic strains rather than evolution of existing strains

Bipolar susceptibilities

Indigenous A. baumannii strain

Last Update: 1/28/15 12:53 PM Collected: 1/23/15 5:15 PM Specimen Desc: Bronch wash BRONCHIAL WASHING CULTURE

Accession Num: F6715105 Special Request: None Status: Modified

Gram Stain: Rare WBCs present; Few Gram Positive Cocci; Many Gram Positive Rods Culture: Moderate Acinetobacter baumanii/haemolyticus (anitratus)

> Moderate Serratia marcescens Moderate Normal Respiratory Flora

ACINETOBACTER ANITRATUS (BAUM./HAEMOLY.)

	MIC (mcg/mL)	MIC Interpretation
Amikacin	<=16	Sensitive
Amp/Sulbactam	<=8/4	Sensitive
Cefepime	<=4	Sensitive
Ceftazidime	4	Sensitive
Ceftriaxone	8	Sensitive
Ciprofloxacin	<=1	Sensitive
Gentamicin	<=4	Sensitive
Levofloxacin	<=2	Sensitive
Meropenem	<=1	Sensitive
Sulfa/Trimethoprim	<=2/38	Sensitive
Tobramycin	<=4	Sensitive

Epidemic A. baumannii strain

Last Update:	2/01/15	10:48 AM	TISSU
Collected:	1/28/15	9:34 AM	
Specimen Desc	: Tissue	SACRAL CORA	APOSITION

TISSUE/SURGICAL CULTURE Accession Num: W7027329

Accession Num: W7027329 Sta Special Request: None

Status: Final

Gram Stain: Moderate WBCs present; No organisms present

Culture: Moderate Pseudomonas aeruginosa

Moderate Acinetobacter baumanii/haemolyticus (anitratus) Rare Enterococcus faecalis Vancomycin Resistant

ACINETOBACTER ANITRATUS (BAUM./HAEMOLY.)

	MIC (mcg/mL)	MIC Interpretation
Amikacin	>32	Resistant
Amp/Sulbactam	16/8	Intermediate
Cefepime	>16	Resistant
Ceftazidime	>16	Resistant
Ceftriaxone	>32	Resistant
Ciprofloxacin	>2	Resistant
Gentamicin	>8	Resistant
Levofloxacin	4	Intermediate
Meropenem	>8	Resistant
Sulfa/Trimethoprim	>2/38	Resistant
Tobramycin	>8	Resistant

Antimicrobial susceptibility

• Antimicrobial susceptibility of ICU and non-ICU clinical isolates in the U.S. (2009-2011)

IC2 (CC2/CC92)

- 65 carbapenemnonsusceptible *A. baumannii* isolates
 - Collected from 6 hospitals across the U.S. in 2008-2009 (NY, PA, MO, FL, NV, CA)
 - 24 PFGE clusters for 65 isolates
 - By MLST, STs belonging to Clonal Complex (CC) 92/CC2 accounted for 55/65 isolates

FIG. 1. PFGE and MLST results from the carbapenem-nonsusceptible study isolates. STs are based on the Bartual scheme.

Resistance mechanisms

- A. baumannii is intrinsically resistant to antimicrobials
- Highly impermeable outer membranes
 - 2-7-fold less permeable to cephalosporins than *P. aeruginosa*
- Efflux pumps
 - MFS (major facilitator superfamily) and RND (resistance-nodulation-division) family

Efflux by Ade transporters

- RND family transporters of A. baumannii
 - AdeABC
 - Regulator = AdeRS (activator)
 - Substrates = cephalosporins, carbapenem, aminoglycosides, fluoroquinolones, tigecycline
 - AdeFGH
 - Regulator = AdeL (activator-repressor)
 - Substrates = fluoroquinolones, trimethoprim
 - AdelJK
 - Regulator = AdeN (repressor)
 - Substrates = cephalosporins, meropenem, fluoroquinolones, tigecycline

Coyne S, et al. Antimicrob Agents Chemother 2011;55:947 Yoon EJ, et al. mBio 2015;6:e00309-15 Acquired resistance

Intrinsic

resistance

ade(

adeK

adeB

adeJ

adeG

adeA

ade

β-lactamases of *A. baumannii*

- Intrinsic β-lactamases
 - OXA-51 group
 - Weak carbapenemases
 - IC1 → OXA-69
 - IC2 \rightarrow OXA-66
 - IC3 \rightarrow OXA-71
 - Modest contribution to carbapenem resistance
 - ADC (AmpC)
 - Cephalosporinase
 - ADC-56 confers cefepime resistance

Evans BA, et al. Clin Microbiol Infect 2008;14:268 Tian GB, et al. Antimicrob Agents Chemother 2011;55:4922

β -lactam resistance

- Acquired β-lactamases
 - ESBLs (CTX-M, PER, GES)
 - Acquired OXA carbapenemases
- Carbapenem resistance is largely mediated by production of acquired OXA carbapenemases
 - OXA-23
 - OXA-40
 - OXA-58
 - OXA-143/253
 - OXA-235

Huang H, et al. J Antimicrob Chemother 2012;67:2825

Aminoglycoside resistance

- Efflux
 - AdeABC
- Aminoglycoside-modifying enzymes
 - AAC(6')-lb
 - AAC(3)-la
 - APH(3')-IIb
 - APH(3')-VIa etc.
- 16S rRNA methyltransferase
 - ArmA
 - Located on Tn6180
 - High-level GEN/TOB/AMK resistance

Blackwell GA, et al. J Antimicrob Chemother 2017;72:1031

Fluoroquinolone resistance

- Efflux
 - AdeABC
 - AdelJK
- QRDR mutations
 - <u>Quinolone Resistance Determining Regions</u>
 - GyrA: Ser83→Leu
 - ParC: Ser80 →Leu
- Likely working synergistically for high-level resistance

Lopes BS, Amyes SG. Int J Antimicrob Agents 2013;41:117

How do we treat this?

- The standard approach at UPMC Presbyterian Hospital has been to treat infections with doripenem + colistin
- The combination is bactericidal in vitro
- 4/5 transplant patients survived infection with this this combination (as opposed to 1/11 with others)

Available online at www.sciencedirect.com

DIAGNOSTIC MICROBIOLOGY AND INFECTIOUS DISEASE

Diagnostic Microbiology and Infectious Disease 70 (2011) 246-252

www.elsevier.com/locate/diagmicrobio

Antimicrobial Susceptibility Studies

High mortality rates among solid organ transplant recipients infected with extensively drug-resistant *Acinetobacter baumannii*: using in vitro antibiotic combination testing to identify the combination of a carbapenem and colistin as an effective treatment regimen^{☆,☆,★}

Ryan K. Shields^{a,1}, Eun J. Kwak^{a,1}, Brian A. Potoski^a, Yohei Doi^a, Jennifer M. Adams-Haduch^a, Fernanda P. Silviera^a, Yoshiya Toyoda^a, Joseph M. Pilewski^a, Maria Crespo^a, A. William Pasculle^a, Cornelius J. Clancy^{a,b,*}, M. Hong Nguyen^a

^aUniversity of Pittiburgh, Pittiburgh, Pennsyhania, USA
^bV.A. Pittiburgh Healthcare System, Pittiburgh, Pennsylvania, USA
Received 18 June 2010; accepted 27 December 2010

Shields RK, et al. Diagn Microbiol Infect Dis 2011;70:246

- Carbapenem-resistant infections are treated with colistin (typically in combinations)
 - Cationic peptide which binds lipid A
- Colistin resistance is an emerging issue
 - Global surveillance suggests1.8-7.5% colistin resistance among XDR A. baumannii

100

- 65 A. baumannii VAP isolates from Greece, Spain, Italy
- 48% resistance to colistin

Flamm RK, et al. Diagn Microbiol Infect Dis 2016;85:352 Nowak J, et al. J Antimicrob Chemother 2017;72:3277

• Carbapnem/colistin-resistant infection cases

Pt	Underlying condition	Type of infection	Colistin therapy	Survival	Paired strains	PFGE⁺	Colistin MIC
1	Lung transplant	VAP	Yes	No	Yes	0	2/>256
2	Heart transplant	Mediastinitis	Yes	No	Yes	0	1/>256
3	Lung transplant	VAP	Yes	No	Yes	0	1/>256
4	Respiratory failure	VAP	Yes	Yes	No	-	128
5	Kidney transplant	VAP	Yes	Yes	Yes	0	2/4*
6	Respiratory failure	VAP	Yes	Yes	Yes	0	2/>256
7	Intracranial hemorrhage	VAP	Yes	No	Yes	0	2/>256
8	Cirrhosis	VAP	Yes	No	Yes	0	2/>256
9	Lung transplant	VAP	Yes	Yes	Yes	0	2/>256
10	Heart/lung transplant	VAP	Yes	Yes	Yes	1	2/>256
11	Liver transplant	VAP	Yes	Yes	Yes	0	2/>256
12	Lung transplant	VAP	Yes	Yes	Yes	6	2/>256
13	Cirrhosis	colonization	No	No	No	-	16
14	Liver transplant	bacteremia	Yes	Yes	No	-	>256
15	Lung transplant	VAP	Yes	Yes	Yes	0	2/>256
16	Cerebral palsy	VAP	Yes	No	Yes	0	2/>256
17	Toxic epidermal necrolysis	VAP	Yes	No	No	-	16
18	Intracranial hemorrhage	VAP	Yes	Yes	Yes	5	2/8
19	Stroke	VAP	Yes	Yes	Yes	1	2/256
20	Lung transplant	VAP	Yes	Yes	Yes	1	2/16
21	Lung transplant	VAP	Yes	Yes	Yes	2	0.25/16

Consistent of the Colling the two second and the Colling the District MAD constitution and the distribution of the Colling the

• Most were in ICU and had VAP; 28-day mortality = 30%

Table 1. Characteristics and Outcomes of Patients With Colistin-Resistant Acinetobacter baumannii

Patient	Age	Sex	Underlying Diseases	Culture Site	Type of Infection	ICU	APACHE II Score	Prior Intravenous CMS, d*	Prior Inhaled CMS, d*	Treatment of Colistin-Resistant Infection	Clinical Response	30-d Mortality	Death Attributable to Infection	90 d Recurrence
1	55	F	Lung transplant	Sputum	VAP	Yes	21	16	16	CMS, TIG, AMS	Failure	Yes	Yes	
2	63	м	Heart transplant	Mediastinal fluid	Mediastinitis	Yes	25	8	None	CMS, TIG	Failure	Yes	Yes	
3	43	Μ	Lung transplant	BAL	VAP	Yes	19	76	84	AMS, TIG, RIF	Failure	Yes	No ^b	
4	53	м	Renal transplant	Sputum	VAP	Yes	20	5	None	CMS, DOR, AMS	Success	No		No
5	84	F	Dementia, recurrent pneumonia	Trache al aspirate	VAP	Yes	20	14	14	CMS, DOR	Success	No		Yes
6	76	F	CVA	BAL	VAP	Yes	28	15	9	AMS	Failure	Yes	No ^b	
7	36	м	Morbid obesity, liver cirrhosis	BAL	VAP	Yes	25	10	11	CMS, DOR	Failure	No		
8	68	м	Lung transplant	Sputum	Colonization	Yes	22	4	7	None		No		No
9	61	м	Heart and lung transplant	Sputum	HAP	No	15	5	9	CMS, DOR, AMS	Success	No		Yes
10	52	F	Liver transplant	BAL	VAP	Yes	20	11	10	CMS, DOR, AMS	Success	No		No
11	62	м	Lung transplant	Bronchial wash	VAP	Ne	12	14	14	CMS, DOR, AMS	Success	No		No
12	71	М	Lung transplant	Bronchial wash	VAP	Yes	17	None	9	CMS (inhaled only), DOR	Success	No		No
13	62	F	Mental retardation, Parkinson's disease	BAL	VAP	Yes	13	28	28	CMS, DOR	Failure	Yes	Yes	
14	66	F	CVA	BAL	VAP	Yes	20	32	15	CMS, DOR	Failure	Yes	Yes	
15	63	Μ	CVA	BAL	Colonization	Yes	15	2	None	None		No		No
16	77	М	Lung transplant	Sputum	Colonization	Yes	17	7	7	None		No		No
17	63	F	Lung transplant	BAL	VAP	Yes	10	30	6	CMS, DOR, AMS	Success	No		No
18	25	F	Toxic epidermal necrolysis	Pleural fluid	VAP	Yes	19	21	21	CMS, MEM	Success	No		No
19	73	Μ	Lung transplant	Blood	Bacteremia	Yes	19	None	None	CMS, DOR, AMS	Success	No		No
20	57	М	COPD, tonsillar carcinoma	Blood	Bacteremia	Yes	27	7	5	CMS, DOR, AMS	Success	No		No

Qureshi ZA, et al. Clin Infect Dis 2015;60:1295

 Most isolates were
 carbapenemresistant and
 belonged to
 IC2
 (CC2/CC92)

 Colistin resistance is due to modification of heptaacylated lipid A

Colistin-susceptible

Phosphoethanolamine

Colistin-resistant

 Phosphoethanolamine modification is detected by mass spectrometry

- Addition of phosphoethanolamine is modulated by the *pmrCAB* operon
 - pmrA = response regulator
 - pmrB = sensor kinase
 - pmrC = phosphoethanolamine transferase
- Associations have been made between specific mutations and resistance

- Complementation of each mutation indicates only some of reported mutations confer resistance
- The end result is lipid A modification by phosphoethanolamine

		Amino acid mutations											
		pmrA (2	24 aa)		pmrB (444 aa)								
Strain	Colistin MIC µg/ml	Rec (aa 5-116)	aa 117- 161		aa 1-215	HisK (aa 216- 276)	aa 277- 330	HATPaseC (aa 331- 419)					
3A4	>256				P190S								
1E4	>256				A183T								
1G2	>256				E186D								
1A3	>256					Q227P							
1H7	>256				P76L, R91S, T192I								
2C9	32				P190T	L249H							
1A7	>256	L20F											
1D5	128	M12I											

Blue = does not confer resistance

- MALDI-TOF as a diagnostic tool?
 - All A. baumannii complex isolates were prospectively collected at UPMC clinical microbiology laboratory for 3 years
 - 451 isolates were identified as *Acinetobacter* spp. and subjected to:
 - Genospecies identification (MALDI-TOF MS)
 - Colistin susceptibility (microbroth MIC)
 - Lipid A profile (MALDI-TOF MS)

- ~8% colistin resistance
- 100% sensitivity & specificity of MALDI-TOF in ID'ing col-R

Treatment of A. baumannii infection

- We still know little
- Key agents
 - Colistin
 - Sulbactam
 - Tigecycline
 - Carbapenem
- Colistin + sulbactam + tigecycline?
 - Network meta-analysis of MDR/XDR infections suggests so
 - Colistin should be in the mix
 - Tigecycline monotherapy to be avoided

(a) Clinical	cure							
COL+SUL+TGC								
1.09 (0.59,2.02)	тас+отн							
1.11 (0.50,2.43)	1.01 (0.59,1.74)	SUL		_				
1.17 (0.56,2.44)	1.07 (0.67,1.71)	1.06 (0.68,1.64)	COL+SUL		_			
1.19 (0.59,2.40)	1.08 (0.72,1.64)	1.07 (0.72,1.60)	1.02 (0.79,1.30)	COL+OTH		_		
1.28 (0.63,2.61)	1.17 (0.76,1.79)	1.16 (0.83,1.62)	1.10 (0.83,1.44)	1.08 (0.87,1.33)	COL		_	
1.38 (0.63,3.04)	1.26 (0.76,2.09)	1.25 (0.67,2.34)	1.18 (0.65,2.17)	1.16 (0.66,2.05)	1.08 (0.63,1.85)	TGC		
1.85 (0.82,4.17)	1.69 (0.97,2.96)	1.67 (0.94,2.99)	1.59 (0.91,2.76)	1.56 (0.93,2.61)	1.45 (0.90,2.34)	1.34 (0.82,2.20)	ОТН	
1.88 (0.85,4.16)	<u>1.72</u> (1.02,2.90)	1.70 (0.91,3.20)	1.61 (0.89,2.93)	1.59 (0.91,2.77)	1.47 (0.86,2.53)	<u>1.36</u> (1.07,1.73)	1.02 (0.63,1.63)	SUL+OTH

Kengkla K, et al. J Antimicrob Chemother 2018;73:22

Treatment of A. baumannii infection

- Outstanding questions regarding therapy:
- 1. Colistimethate (CMS) or polymyxin B?
- 2. Does nebulized CMS help for VAP?
- 3. How much sulbactam should one give?
- 4. Is there a role for double-dose tigecycline?
- 5. How about intravenous minocycline?

Treatment of A. baumannii infection

- Outstanding questions regarding therapy:
- 1. Colistimethate (CMS) or polymyxin B?
- 2. Does nebulized CMS help for VAP?
- 3. How much sulbactam should one give?
- 4. Is there a role for double-dose tigecycline?
- 5. How about intravenous minocycline?

COMBACTE-NET Status: N/A

WP8: Study into the safety and efficacy of minocycline in treating infections due to Acinetobacter species.

WP8 studies the intravenous formulation of minocycline against *Acinetobacter* infections, of which isolates often prove to be multiple resistant. The Medicines Company's MINOCIN® for Injection has been registered in the United States, but in Europe it is not yet available. WP8 aims for European authorization of this agent.

Treatment options in the pipeline

- Many of the new agents are <u>not</u> active against A. baumannii
 - Ceftolozane-tazobactam
 - Ceftazidime-avibactam
 - Meropenem-vaborbactam
 - Plazomicin
- Ones with anti-A. baumannii activity
 - Eravacycline
 - Cefiderocol

Eravacycline

- Synthetic fluorocycline
- Highly active in vitro to A. baumannii
- Unique pharmacokinetics

Connors KP, et al. Antimicrob Agents Chemother 2014;58:2113 Seifert H, et al. Int J Antimicrob Agents 2018;51:62

Cefiderocol

- Siderophore cephalosporin
- Highly active in vitro to A. baumannii
- Pharmacokinetically behaves as a β-lactam

Katsube T, et al. J Clin Pharmacol 2017;57:584 Hackel MA, et al. Antimicrob Agents Chemother 2017;24:61:e01968-17

Engineered peptides

- Synthetic cationic antibiotic peptides
- Lead (WLBU2 = 24-mer) is more active than colistin against carbapenem-resistant bacteria including A. baumannii
- Also active against Gram-positives

Deslouches B, et al. Antimicrob Agents Chemother 2015;59:1329

Bacteriophage therapy

- Phage cocktail given to a patient on an eIND basis
 - Developed necrotizing pancreatitis while in Egypt and repatriated
 - Treated with vancomycin, meroepenem, colistin, tigecycline
 - Pseudocyst fluid grew MDR A. baumannii
 - Treated with colistin, azithromycin
 - Developed septic shock
 - A cocktail of 4 anti-A. baumannii phages were given to the cavities, then intravenously for 59 days

Schooley RT, et al. Antimicrob Agents Chemother 2017;61:e00954-17

Bacteriophage therapy

- He was discharged home 5 months later
- Caveats
 - Minocycline was added while on bacteriophage therapy
 - Resistance developed, necessitating change of the cocktail twice

This man should have died, but unusual infusions saved his life

The Washinaton Post

In conclusion

- Acinetobacter baumannii continues to be a major cause of "untreatable" healthcare-associated infections
- Efflux and other class-specific resistance mechanisms contribute to multidrug resistance
- Specific epidemic clones predominate and should be the focus of research
- High-quality clinical data and trials are still scarce compared with other resistant pathogens of interest
- New treatment options are emerging, both close to clinic and early stage

Acknowledgments

• Laboratory

- Christi McElheny
- Roberta Mettus
- Sarah Bowler
- Caressa Spychala
- Jesabel Rivera
- Jessica O'Hara
- Diana Pakstis
- Lloyd Clark

University of Pittsburgh

- Vaughn Cooper
- Lee Harrison
- Mustapha Mustapha
- Ming Hong Nguyen
- Robert Shanks
- Andrew Nowalk
- Ryan Shields

- University of Maryland
 - Robert Ernst
 - Francesca Gardner
 - Lisa Leung
 - Courtney Chandler
 - Leila Guerrero
 - Lauren Hittle
- Funding
 - National Institutes of Health
 - Pennsylvania Department of Health

Number of publications

 PubMed search - "carbapenem AND resistance AND (acinetobacter OR klebsiella[title])"

