Rapid Diagnostics and AMR

Angela M. Caliendo, MD, PhD, FIDSA Professor and Vice Chair, Department of Medicine Warren Alpert Medical School of Brown University Providence, RI

Disclosures

- Scientific Advisory Boards:
 - Roche Molecular, Quidel, Cepheid, DNAe, IDbyDNA, Luminex
- Clinical Trials:
 - T2 Biosystems, Hologic

Rapid Diagnostics and AMR

- Rapid detection of pathogens from positive blood culture or colony
- Rapid susceptibility testing
- Direct detection from blood
 - T2 Biosystems
- Xpert Carba-R test for carbapenem-resistant bacteria

Rapid Techniques for Identification of MDRO

- How fast is rapid
 - Less than an hour, hours, days, better than what we are currently doing
- Location of testing
 - Central laboratory, rapid response laboratory
- Type of testing
 - From an isolate, positive blood culture bottle, primary specimen
- Goal: change clinical management, support stewardship program

MALDI-TOF MS

Matrix-assisted laser desorption ionization-time of flight mass spectrometry

- Rapid method to identify bacteria and fungi
 - From a colony, positive blood culture bottle
 - Genus and/or species level
- Based on the protein signature of the organism
 - Database is key
- Testing is very rapid, expensive instrument, inexpensive testing
- Mixed cultures are a problem
- No susceptibility results

MALDI-TOF: Blood culture positive for GNR

Identification: 37 hrs vs 11 hrs; Susceptibility 47 hrs vs 24 hrs; Adjust therapy 75 hrs vs 29 hrs

Perez KK et al. Arch Pathol Lab Med 2013:137:1247

	Table 2.	Length of Stay and Cost Outco	mes in Survivors ^a	
Outcome		Preintervention Cohort (n = 100)	Intervention Cohort ($n = 101$)	Р
Hospital length of stay Hospital length of stay after E ICU length of stay ICU length of stay after BSI o Total hospital costs MS DRG weight	3SI onset nset	$ \begin{array}{r} 11.9 \pm 9.3 \\ 9.9 \pm 7.1 \\ 7.3 \pm 8.5 \\ 6.1 \pm 6 \\ \$45.709 \pm \$61.806 \\ 2.7 \pm 2.4 \end{array} $	9.3 ± 7.6 8.1 ± 6.4 6.3 ± 8.7 4.9 ± 6.7 $$26\ 162 \pm $28\ 996$ ± 1.9	.01 .01 .05 .09 .009 54

Rapid identification and susceptibility testing with antimicrobial stewardship program improved time to optimal therapy, reduced LOS and total costs

Perez KK et al. Arch Pathol Lab Med 2013:137:1247

Cost Analysis of Implementing Matrix-Assisted Laser Desorption Ionization– Time of Flight Mass Spectrometry Plus Real-Time Antimicrobial Stewardship Intervention for Bloodstream Infections

Twisha S. Patel,^{a,b} Rola Kaakeh,^b Jerod L. Nagel,^{a,b} Duane W. Newton,^c James G. Stevenson^b

TABLE 4 Clinical outcomes for preintervention group compared to intervention group

Parameter	Preintervention $(n = 247)$	Intervention $(n = 233)$	Relative risk reduction (%)	P value
30-day mortality	52 (21) ^a	28 (12) ^a	43	<0.01
Hospital LOS ^c (days)	14.2 ± 16.7 ^b	13.0 ± 16.5 ^b		0.44

^aData represent number (percent) of patients.

^{*b*}Data represent mean \pm standard deviation.

^cLOS, length of stay (length of time of hospitalization blood culture positivity to discharge).

Cost: Preintervention: \$45,019, postintervention \$42,589 (NS), savings to the health system ~\$2 million annually

Patel TS et al. JCM 2016;55:60-67

FilmArray Blood Culture ID Panel FDA Cleared, Positive Blood Culture, ~1hr

Gram + Bacteria

Enterococcus spp. L. monocytogenes Staphylococcus spp. S. aureus Streptococcus spp. S. agalactiae (Group B) S. pyogenes (Group A) S. pneumoniae

Gram - Bacteria

A. baumannii Enterobacteriaceae Enterobacter cloacae Complex F. coli H. influenzae K. oxytoca K. pneumoniae N. meningitidis P. aeruginosa *Proteus* spp. S. marcescens

<u>Fungi</u>

- C. albicans
- C. glabrata
- C. krusei
- C. parapsiolosis
- C. tropicalis

Antibiotic Resistance

mecA Van A/B KPC

Verigene Gram Positive Test FDA Cleared, Positive Blood Culture, ~2hrs

Species

- S. aureus
- S. epidermidis
- S. lugdunensis

Streptococcus anginosus Group Streptococcus agalactiae Streptococcus pneumoniae Streptococcus pyogenes Enterococcus faecalis Enterococcus faecium

<u>Genus</u>

Staphylococcus spp. Streptococcus spp. Listeria spp.

Resistance

mecA (methicillin) *vanA* (vancomycin) *vanB* (vancomycin)

Verigene Gram Negative Test FDA Cleared, Positive Blood Culture, ~2hrs

Species

Escherichia coli Klebsiella pneumoniae Klebsiella oxytoca Pseudomonas aeruginosa

<u>Genus</u>

Acinetobacter spp. Citrobacter spp. Enterobacter spp. Proteus spp.

Resistance

CTX-M (ESBL) IMP (carbapenemase) KPC (carbapenemase) NDM (carbapenemase) OXA (carbapenemase) VIM (carbapenemase) Prospective randomized trial to assess benefit of rapid highly multiplexed PCR-based test in identifying bacteria and yeast from positive blood cultures

- FilmArray: >20 bacteria and yeast, resistance genes mecA, van A/B, and bla_{KPC}
- Role of stewardship program evaluated

Study Design

- 3 arms to the study
 - SOC Maldi-TOF MS from colonies isolated from positive BC
 - PCR Rapid multiplex PCR with templated comments
 - PCR/AS Rapid multiplex PCR, templated comments and real-time stewardship
- FilmArray run 24/7, as soon as bottle positive
- Results of PCR called to the team and put in EMR
- PCR/AS stewardship team (ID/pharmacist) called 24/7

Time from blood culture bottle gram stain to organism ID Intervention arm: 1.3 hours, SOC: 22.3 hours (p < 0.001)

Table 3. Antibiotic Utilization Among All Study Subjects in the First 96 Hours Following Enrollment

Outcome	Control	Rapid Multiplex PCR	Rapid Multiplex PCR + Stewardship	P Value Comparing 3 Groups
Duration of therapy ^a , h				
Vancomycin				
All patients (n = 357)	44 (22–72)	42 (21–93)	42 (19–90)	.92
Organisms not requiring vancomycin ^b (n = 169)	8.2 (0-26)	0 (0–16)	0 (0–3) ^c	.032
Vancomycin-susceptible enterococci (n = 32)	20 (1–59)	70 (48–88) ^c	82 (40–96) ^c	.037
Methicillin-susceptible Staphylococcus aureus (n = 42)	23 (20–53)	11 (0-26)	8 (0–44)	.2
Nafcillin, oxacillin, or cefazolin (n = 50)	42 (24–57)	71 (51–79) ^c	85 (42–92) ^c	.035
Piperacillin-tazobactam (n = 214)	56 (39–82)	44 (27–74) ^c	45 (19–78) ^c	.012
Cefepime (n = 181)	55 (28–96)	71 (43–96)	58 (32–96)	.56
Antibiotic modifications				
Time to first appropriate de-escalation ^d (n = 344)	34 (21–55)	38 (22–66)	21 (7–37) ^{c,e}	<.0001
Time to first appropriate escalation ^{f} (n = 122)	24 (3–67)	6 (2–36)	5 (2–22) ^c	.04
Time to administration of active antibiotics (n = 123) ⁹	11 (2–51)	6 (2–31)	4 (2–20)	.55
Contaminated blood cultures not treated or treated for <24 h, No. (%) ^h	47 (75)	49 (89) ^c	57 (92) ^c	.015

Groups did not differ in mortality, length of stay, cost Study was not powered for these outcomes

81% of organisms isolated were detected by FilmArray

- Low % of KPC producing organisms
- Designing large multi-center study

Survey to Assess Interpretation of FilmArray BCID Results

- 156 physicians responded (41%), 56% IM, 20% FM
- Only 60% of physicians adjusted antibiotics based on FilmArray BCID results

FABLE 5 Knowledge questions v	th corresponding proportion o	f correct responses by specialty
--------------------------------------	-------------------------------	----------------------------------

		% (no.) by specialty				
Competency assessed in question	n	Overall	Family medicine	Internal medicine	Other	P value
Organism identification based on BCID results						
Escherichia coli detected	119	60 (71)	38 (45)	70 (83)	45 (54)	0.02
Coagulase-negative Staphylococcus species detected	118	71 (84)	50 (59)	80 (94)	70 (83)	0.03
Methicillin-resistant Staphylococcus aureus detected	116	81 (94)	75 (87)	84 (97)	80 (93)	0.60
Appropriate treatment based on clinical history and BCID results						
Discontinue therapy, contaminated blood culture, coagulase- negative <i>Staphylococcus</i> species detected	113	76 (86)	65 (73)	80 (90)	76 (86)	0.37
Need to initiate therapy, vancomycin-resistant Enterococcus detected	110	86 (95)	87 (96)	88 (97)	82 (90)	0.71
De-escalate therapy indicated, <i>S. aureus</i> (methicillin susceptible) detected	102	53 (54)	33 (34)	61 (62)	52 (53)	0.10
De-escalate therapy indicated, Streptococcus agalactiae detected	98	52 (51)	60 (59)	52 (51)	46 (45)	0.63

Donner et al. JCM 2017;55:1496

Genotypic Resistance Testing

- Gram positive bacteria
 - Genotypic susceptibility testing can provide important and complete information
 - mecA, vanA/B
- Gram negative pathogens
 - Unlikely that genotypic data will be complete, positive result is helpful, not necessarily a negative result
 - Will need to be modified regularly
 - Not clear how efficiently this will be done from a regulatory perspective

Accelerate Pheno System

- Fully automated system
- Rapid identification from a positive blood culture
 - 1-2 hour, using FISH probes
- Susceptibility testing
 - ~7 hours, monitoring growth patterns and intensity
- Working from a positive blood culture

Figure 1. Accelerate ID/AST Technology process flow.

Polymicrobial Detection

Example: E. coli and *C. koseri* in same sample. Flow channel 5 & 11 species FISH probes are positive

- Universal probes signal bacteria and yeast
- E. coli flowcell (5) is positive.

Citrobacter spp.					
flowcell (11) is also					
positive.					

Polymicrobial infection is detected by comparing results from each flow channel.

h use only. Not for use in diagnostic procedures.

1-Hour FISH Identification

• E. coli Sample in E. coli Test Channel

Time lapsed images of susceptible (S) and resistant (R) S. *pneumoniae* isolates growing in penicillin. Susceptible bacteria exhibit slow elongated growth compared to resistant bacteria

Gamage D et al. ICAAC 2014, Poster D-873, Washington DC

Phenotypic features such as morphological growth patterns, intensity, and growth rate are tracked and a MIC is calculated using multivariate logistic regression.

P. aeruginosa with 2 µg/mL ciprofloxacin

Not for use in diagnostic procedures.

Accelerate Pheno System

- 115 blood stream infections (BSI) with gram negative pathogens
- Pheno System identification
 - 88.7% (102/115) of all BSI
 - 97.1% (102/105) of bacteria on the panel
- AST results
 - 91.3% (95/104) in which GNR was identified by Pheno System
 - 96.4% category agreement (Vitek 2 and Etest)
 - 1.4% minor, 2.3% major and 1.0% very major errors

Specificity^b Sensitivity^a No. detected/ No. detected/ Organism no. tested % no. tested % Gram positives Coagulase-negative Staphylococcus spp. 52/52 100 169/172 98.3 Enterococcus faecalis 15/1788.2 215/215 100 Enterococcus faecium 3/5 60 227/227 100 Staphylococcus aureus 18/19 94.7 200/202 99 Staphylococcus lugdunensis 0/0 228/228 100 NAC Streptococcus spp. 21/21 205/210 97.6 100 Total 109/114 95.6 1,244/1,254 99.1 Gram negatives Acinetobacter baumannii 100 3/3 100 229/229 2/2 100 230/230 100 *Citrobacter* spp. Enterobacter spp. 11/1384.6 215/216 99.5 Escherichia coli 30/31 96.8 201/201 100 Klebsiella spp. 20/21 95.2 211/211 100 Proteus spp. 3/3 100 229/229 100 Pseudomonas aeruginosa 9/9 100 223/223 100 Serratia marcescens 3/3 100 229/229 100 Total 81/85 95.3 1,767/1,768 99.9 Yeast Candida albicans 2/2100 229/229 100 Candida glabrata 3/3 224/229 97.8 100 5/5Total 100 453/458 98.9 Overall^d 195/204 3,464/3,480 99.5 95.6

TABLE 2 Performance characteristics of the Accelerate Pheno system for organism identification (after adjudication of discrepant results)

Charnot-Katsikas A et al. JCM 2018;56: e01166-17

	No. of	No. of VMEs ^a					No. of MEs ^b			
Antibiotic	Total	Resolved to AXDX	Resolved to SOC	Resolved to neither	Unresolved	Total	Resolved to AXDX	Resolved to SOC	Resolved to neither	Unresolved
Gram-positive organisms										
Erythromycin	2	2	0	0	0	0	0	0	0	0
Linezolid	1	1	0	0	0	0	0	0	0	0
Gram-negative organisms										
Ampicillin-sulbactam	1	0	0	1	0	0	0	0	0	0
Cefepime	0	0	0	0	0	1	0	0	1	0
Ceftazidime	1	0	0	1	0	1	0	1	0	0
Ciprofloxacin	1	1	0	0	0	0	0	0	0	0
Ertapenem	1	0	0	1	0	1	0	1	0	0
Resistance phenotype tests										
Cefoxitin (methicillin resistance)	1	0	1	0	0	1	1	0	0	0
Total	8	4	1	3	0	4	1	2	1	0

TABLE 3 Summary of very major and major errors in antimicrobial susceptibility

^aVME, very major error.

^bME, major error.

Accelerate Pheno System

- Rapid, sensitive and accurate if organism is on the panel
- Not complete data
 - Continued improvement to the system and instrumentation (currently one test per instrument)
- Add-on test in the clinical laboratory
- Outcomes data to fully understand the value
- Incremental progress not transformative

Direct Detection of Pathogens from Blood

The graveyard of direct from sample tests

- SeptiFast: real-time PCR (Roche)
 - Direct from blood test for detecting bacteria
 - Sensitivity ~80%
 - Specificity issues, ubiquitous bacteria and molds
 - Learned a lot about contamination of reagents with bacterial DNA
- PCR/EIS-MS (Abbott)
 - PCR electrospray ionization-mass spectrometry
 - Direct from blood for detecting bacteria

T2 Magnetic Resonance (T2MR)

Time to result: 3-5 hours

Neely LA, et al. Science Translational Medicine 2013;5, 182ra54

T2Bacteria Pivotal Clinical Trial

Species	Seeded Sensitivity	Seeded Specificity	Species	Prospective Sensitivity	Prospective Specificity
A. baumannii	97.5% (39/40)	99.7% (299/300)	A. baumannii	- (0/0)	99.7% (1414/1427)
E. coli	90.9% (20/22)	97.3% (292/300)	E. coli	90.9% (10/11)	95.0% (1345/1416)
E. faecium	100.0% (40/40)	100.0% (300/300)	E. faecium	100.0% (1/1)	99.4% (1417/1426)
K. pneumoniae	100.0% (40/40)	99.3% (298/300)	K. pneumoniae	100.0% (6/6)	98.5% (1399/1421)
P. aeruginosa	97.4% (38/39)	97.7% (293/300)	P. aeruginosa	100.0% (5/5)	97.7% (1389/1422)
S. aureus	92.3% (36/39)	100.0% (300/300)	S. aureus	81.3% (13/16)	98.0% (1383/1411)
	7 T2-/BC+	18 T2+/BC-		4/39 T2-/BC+	176 T2+/BC-

T2Bacteria Pivotal Clinical Study Data Provided by T2: **T2Bacteria Panel data submitted to FDA. Performance** characteristics have not been established.

Preliminary Analysis of Discordant Results T2Bacteria+/Blood Culture-

Evaluated looking at additional blood culture results obtained +/- 14 days of the paired T2 / blood culture draw.

36% of the T2+/BC- results were concordant with species identification from other cultures.

Further adjudication is in progress

Bacteria	Percentage of T2+/BC- results with other Positive Cultures
A. baumannii	0/13
E. coli	23/70 (33%)
E. faecium	4/9 (44%)
K. pneumoniae	8/21 (38%)
P. aeruginosa	7/32 (22%)
S. aureus	21/28 (75%)
Total	63/173 (36%)

T2Bacteria Pivotal Clinical Study Data Provided by T2: **T2Bacteria Panel data submitted to FDA. Performance characteristics have not been established.**

T2 Biosystem

- Rapid result (with the need for culture) with a sensitivity of ~90%, specificity 98-99%
 - Will results change management?
- Incomplete data
 - Candida auris in development
 - Expansion of bacterial panel underway
- No susceptibility results
- Outcomes studies are needed to assess the clinical impact

Xpert Carba-R Assay to Detect Carbapenem-Resistant Bacteria

- Cartridge detects five classes of carbapenem resistance genes (91 in total):
 - bla_{KPC}
 - bla_{NDM}
 - bla_{VIM}
 - bla_{OXA-48}
 - bla_{IMP-1}
- Samples types: carbapenem nonsusceptible colonies, rectal and perirectal swabs
- Time to result: 48 minutes

Xpert Carba-R Spectrum of Detection

Courtesy of Cepheid

TABLE 2 Performance of CDC surveillance and UCLA CRE definitions for identification of CP-CRE with and without ancillary carbapenemase testing using Xpert Carba-R or CIM assay^a

	Sensitiv	ity	Specifici	ty
Definition and ancillary test used	%	95% Cl	%	95% Cl
CDC CP-CRE				
No ancillary testing	98.9	93.2–99.9	6.1	1.1–21.6
With Xpert Carba-R	99.9	94.9–99.9	100	19.8–100
With CIM ^b	97.6	92.5–99.4	100	19.8–100
UCLA CRE				
No ancillary testing	100	95.0-100	24.2	11.7–42.6
With Xpert Carba-R	100	95.0-100	100	87.0–100
With CIM	97.7	91.4–99.6	100	87.0–100

^aThe CDC definition is ertapenem, meropenem, and/or imipenem resistant. The UCLA definition is intermediate or resistant to imipenem and/or meropenem, with the exception of *Proteus/Providencia/Morganella*, where only meropenem is considered. n = 125 isolates of *Enterobacteriaceae*; analysis with CIM ancillary testing excludes the 3 indeterminate results.
 ^bThe CIM ancillary test method consisted of incubating a meropenem disk in a TSB suspension of organisms for 2 h, followed by 18 h of incubation of disk diffusion plate.

CDC defined CRE to assist labs to identify carbapenemase producing CRE (CP-CRE)

125 isolates of *Enterobacteriaceae*

CIM – carbapenem inactivation method – phenotypic screen (over night)

Miller SA et al. JCM 2017;55:1827

Table 2. Performance characteristics of methods evaluated for the detection of CP-GNB.						
Method	Overall percent agreement, %	PPA, %	NPA, %			
CIM	95.7	99.3	86.0			
HardyCHROM CRE	73.0	99.3	0.0			
bioMérieux chromID CARBA	79.9	99.3	25.0			
Xpert Carba-R	95.8ª/100.0 ^b	94.2ª/100.0 ^b	100.0ª/100.0 ^b			
^a Calculation based on all carbapenemase genes, including those not detected by the Xpert Carba-R assay (e.g., <i>bla_{SME}, bla_{IMI}).</i> ^b Calculations based only on carbapenemase genes detectable by the Xpert Carba-R assay (<i>bla_{KPC}, bla_{NDM}, bla_{IMP}, bla_{OXA-48-like},</i> and <i>bla_{VIM}</i>).						

189 isolates of Enterobacteriaceae, P. aeruginosa, A. baumannii complex

CIM – carbapenem inactivation method – phenotypic screen (over night) HardyCHROM CRE and chromID CARBA – chromogenic agars

Screen with CIM followed by Xpert Carba-R: accurate method for detecting and characterizing CP-GNB including *Enterobacteriaceae, P. aeruginosa, A. baumannii* complex

McMullen AR et al. Clin Chem 2017;63:723

Summary

- Array of rapid methods available
- Manage incomplete data
 - Clinicians need support and expert advice
 - Role of the Stewardship Team
- Essential to identify tests that provide value
- Need outcomes data to support use of these tests
 - May differ for each institution, patient population