New Insights into Peptidoglycan Biosynthesis

Louis B. Rice Warren Alpert Medical School of Brown University Providence, RI

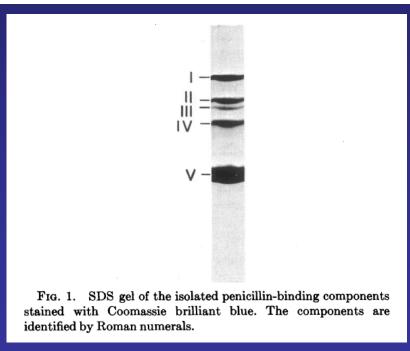
Outline of Presentation

- Review role of penicillin-binding proteins in cell wall synthesis, antibiotic susceptibility and resistance
- Discuss the role of auxiliary proteins in cell wall synthesis
- Point out where simple models and ideas, though appealing, break down
- Discuss the interplay between cell wall synthesis proteins and the bacterial membrane
- Review new targets and some compounds in development

Cell Wall Synthesis

- Bacterial peptidoglycan synthesis and remodeling are accomplished through the activities of transpeptidases, transglycosylases and carboxypeptidases referred to as penicillin-binding proteins (PBPs)
- Cell wall maintenance during stationary phase also involves PBPs and cell wall hydrolases

Proc. Nat. Acad. Sci. USA Vol. 69, No. 12, pp. 3751-3755, December 1972


Isolation by Covalent Affinity Chromatography of the Penicillin-Binding Components from Membranes of *Bacillus subtilis*

(D-alanine carboxypeptidase/transpeptidase/detergent solubilization)

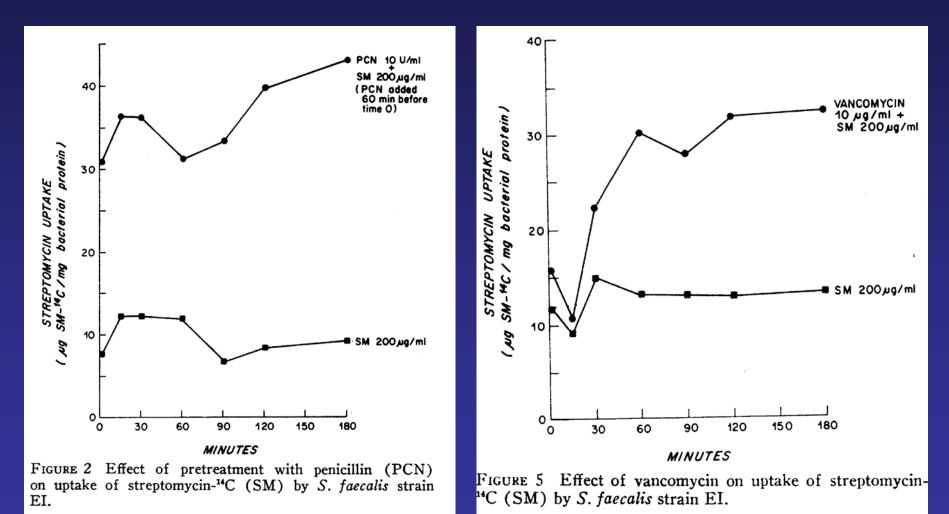
PETER M. BLUMBERG AND JACK L. STROMINGER

Biological Laboratories, Harvard University, Cambridge, Massachusetts 02138

Contributed by Jack L. Strominger, October 13, 1972

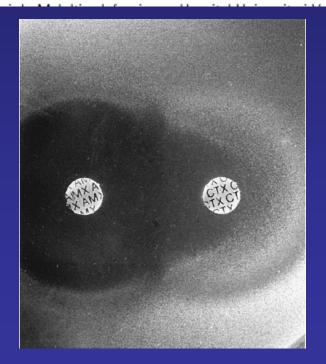
Penicillin-Binding Protein Classes

- Class A an N-terminal transglycosylase domain and a C-terminal transpeptidase domain
- Class B a C-terminal transpeptidase domain and an N-terminal morphogenic domain that does not possess transglycosylase function
- Carboxypeptidases


Penicillin-Binding Proteins

- Recognized early on that some (*E. coli* 1-3) were essential while others(4-6) were not
- Differential binding correlated with activity and with effect (filaments vs. round cells)
- Antibiotic development sought to inhibit a broader range of Pbps (*Pseudomonas*)
- In most, but not all, cases, inhibition was associated with bacterial cell death

Enterococcal Tolerance


- Characteristic whereby the antibiotic concentration required to kill the bacterium is much greater than that required to inhibit it
- Important in treatment of endocarditis
- Synergistic bactericidal activity achievable by combining cell wall active agent with an aminoglycoside

Synergism vs. Enterococci Moellering and Weinberg J. Clin. Invest. 1971 50: 2580-4

Ampicillin Plus Ceftriaxone Is as Effective as Ampicillin Plus Gentamicin for Treating *Enterococcus faecalis* Infective Endocarditis

Nuria Fernández-Hidalgo,¹ Benito Almirante,¹ Joan Gavaldà,¹ Mercè Gurgui,² Carmen Peña,³ Arístides de Alarcón,⁴ Josefa Ruiz,⁵ Isidre Vilacosta,⁶ Miguel Montejo,⁷ Nuria Vallejo,⁸ Francisco López-Medrano,⁹ Antonio Plata,¹⁰ Javier López,¹¹ Carmen Hidalgo-Tenorio,¹² Juan Gálvez,¹³ Carmen Sáez,¹⁴ José Manuel Lomas,¹⁵ Marco Falcone,¹⁸ Javier de la Torre,¹⁶ Xavier Martínez-Lacasa,¹⁷ and Albert Pahissa¹

Clinical Infectious Diseases (2013) 56: 1261

Mainardi, et al (1995) AAC 39: 1984

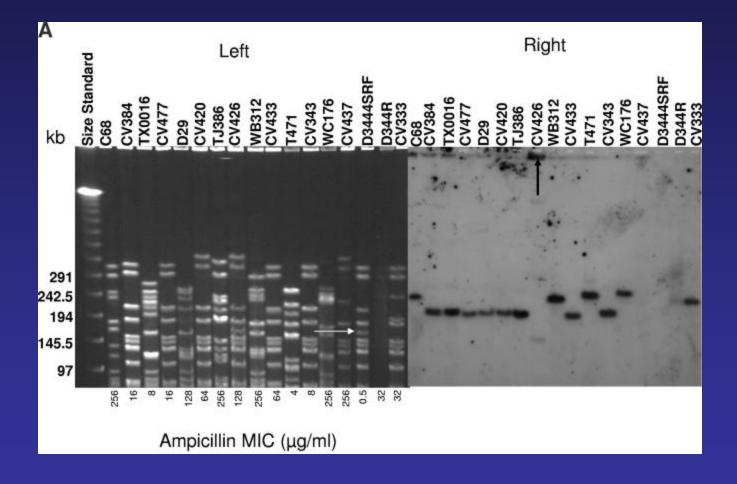
Clinical use of antibiotics was associated with the emergence of strains resistant because of changes in Pbps

(Almost exclusively a Gram-positive phenomenon)

Mosaic Pbps

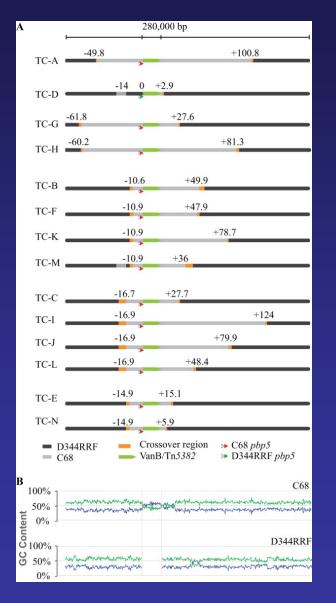
Chi, et al (2007) Int. J. Med. Microbiol. 297: 503

E. faecium PBP5 Mutations and Resistance


	Amino	acid at j	position	within PBP5 Penicillin (µg/ml)					S ₅₀ (μgml)				
Plasmid	485	499	629	Ser 466'	256	128	64	32	16	8	4	2	
pCWR624	Μ	Ι	E	-								i Parrie (*	8
pCWR633		Т		-	600			-	-	-			12
pCWR634			\mathbf{V}	-					-		> -	Contra International	11
pCWR662			v	+	Ċ								16
pCWR661		Т		+							Searce State	a Managara San	16
pCWR651				+					-	-	i administ		16
pCWR635	Т			-						-	(asalati)		40
pCWR697	А			-									64
pCWR663	Т			+	0	0	-	•	•				64
pCWR698	А			+				.					100
pCWR666	A	Т	v	+		-	a georgeological de la companya de l						128

What about *S. pyogenes*?

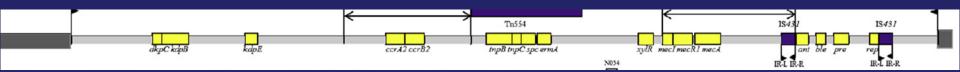
Rice, et al (2004) AAC


Some shared the wealth

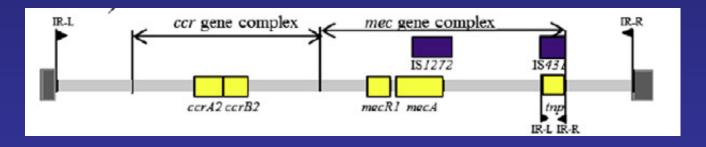
Transferability of *pbp5*

Rice, et al (2005) AAC: 5007-12

Transferable Genomic DNA - E. faecium

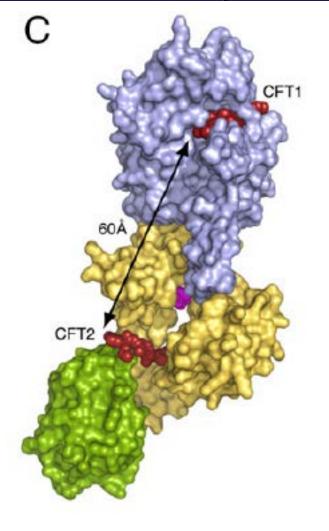


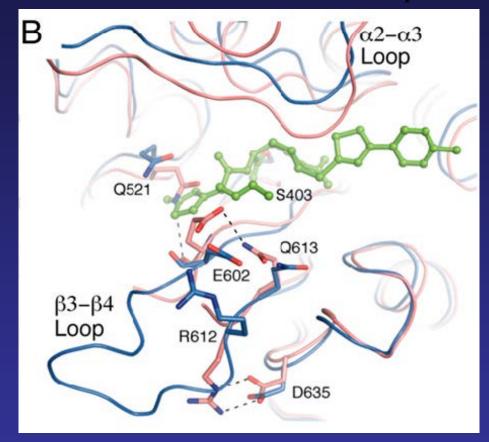
Garcia-Solache (2016) AAC


Others acquired necessary genes from other species

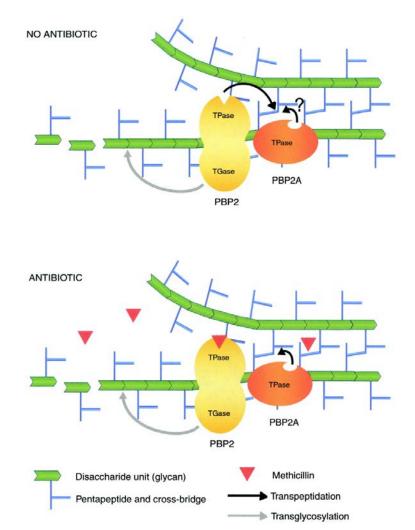
Acquired Pbps (Pbp2a)

SCCmec Type II




SCCmec Type IVb

Liu, et al (2016) Microb Pathogen 101:56


Allostery and Ceftaroline Activity

Otero, et al (2013) PNAS 110: 16808 Pbp2a , as it turned out, needs a lot of help. It seemed almost petulant in its fussiness!

Model for the cooperative functioning of the TGase domain of PBP2 and the TPase activity of PBP2A in methicillin-resistant S. aureus

Pinho M. G. et.al. PNAS 2001;98:10886-10891

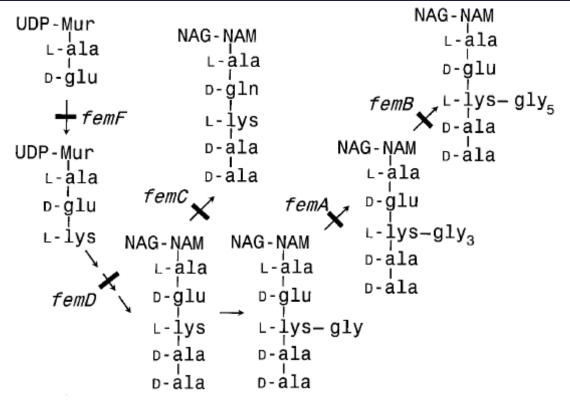
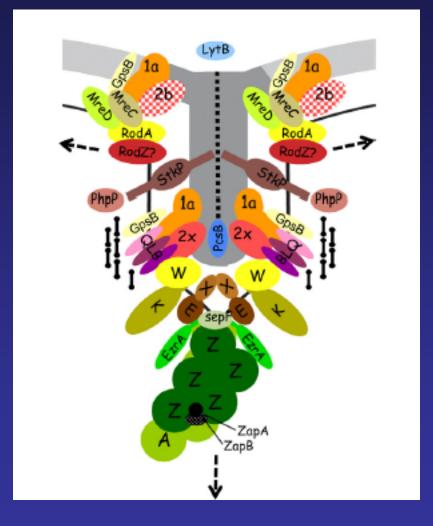
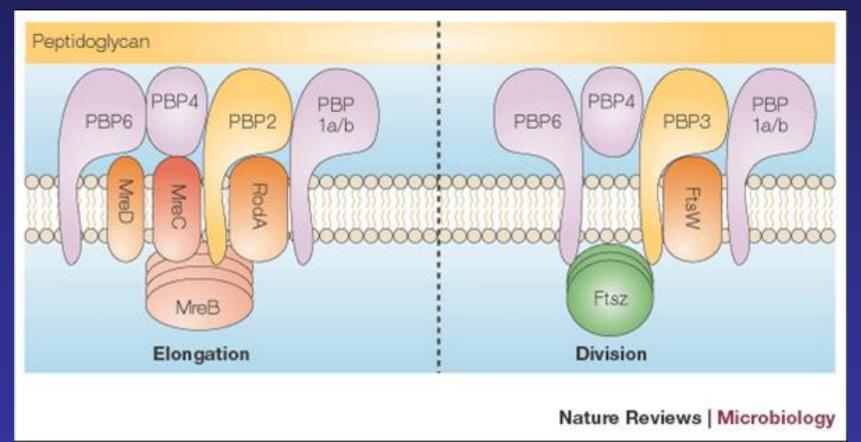


FIG. 3. Sites of peptidoglycan precursor synthesis at which blocks occur in *fem* mutants. UDP-Mur indicates uridine diphosphomuramyl peptide precursor; NAG-NAM, *N*-acetylglucosamine-*N*-acetylmuramic acid disaccharide.


Chambers, HF CMR (1997) 10: 781

Pbp2a is not finicky outside of *S. aureus*

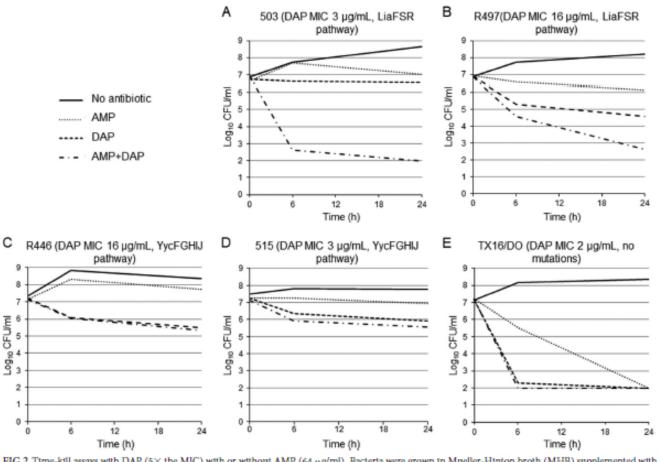

• The mecA gene of S. aureus conferred resistance to ceftriaxone in E. faecalis JH2-2 Δ pbp5 and E. faecium D344S ... Because the D,Dtranspeptidases are the essential target of β -lactams, PBP2a acted as a surrogate of the host D,D-transpeptidases and therefore catalyzed peptidoglycan cross-linking. This implies a low substrate specificity of PBP2a, because the amino group of the acceptor participating in the transpeptidation reaction was located on side chains consisting of five Gly, L-Ala-L-Ala, and D-Asx in S. aureus, E. faecalis, and E. faecium, respectively. These observations establish for the first time that mecA of S. aureus can confer β -lactam resistance in distantly related hosts belonging to the genus Enterococcus, despite substantial diversity in the structure of peptidoglycan precursors.

Arbeloa, et al (2004) J. Biol. Chem. 279: 41546

S. pneumo PG synthesis machinery

Massidda, et al (2013) Env. Microbiol. 15: 3133 Peptidoglycan synthesis is a coordinated process involving several enzymes integrated into bacterial cytoplasmic membrane

Daptomycin-Ceftaroline synergism vs. daptomycin nonsusceptible MRSA and *E. faecium*

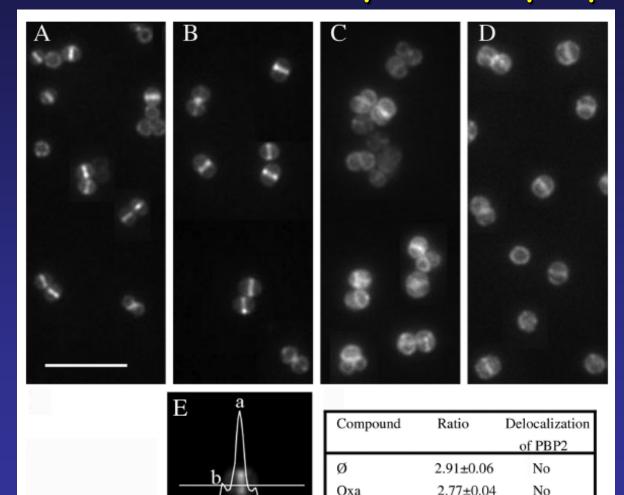

> Rose, et al (2012) AAC 56: 5296 Sakoulas, et al (2014) AAC 58: 1494

Dapto^r and membrane fluidity

Author	Species				
		Membrane fl	Membrane fluidity		
		S	r		
Mishra	S. aureus	Dec	Inc	2/3 sets L-PG>PG	
Kang	S. aureus (Clinical strains)	Same	Same	3/3 L-PG> in R	
Mishra	<i>E. faecalis</i> and <i>E. faecium</i>	Inc	Dec	No diff. in faecalis; dec U FA in R in Faecium	
Jones	S. aureus	Dec	Inc	Dec neg chg PG in R strains	

Mishra, et al (2014) PLOS One; Kang, et al (2017) J Microbiol 55:153 Mishra, et al (2012) PLOS One; Jones, et al (2008) AAC 52: 269

E. faecium LiaFSR.



LiaFSR is a 3component regulatory pathway involved in cell membrane stress response.

- MICs>3 µg/ml associated with decreased daptomycin membrane binding
- Amp/Dapto synergism seen only in strains with LiaFSR mutations

Diaz, et al (2014) AAC 58: 4527

Epicatechin Gallate induced changes in membrane fluidity and Pbp2 positioning

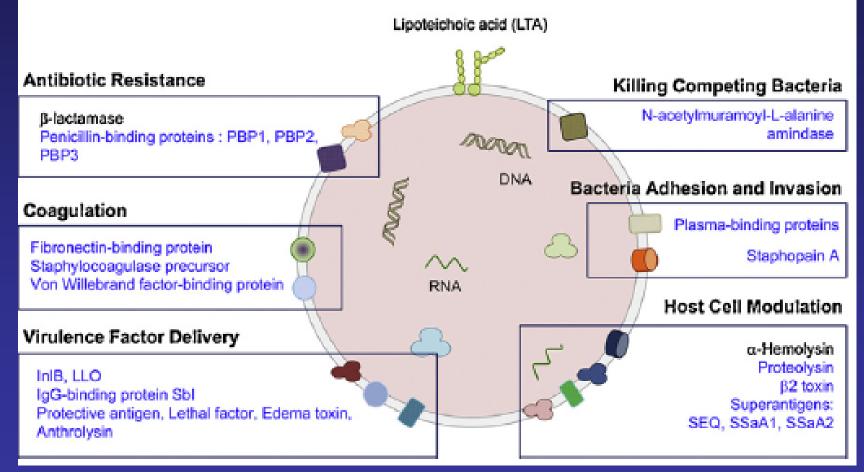
ECg

Oxa + ECg

 1.84 ± 0.02

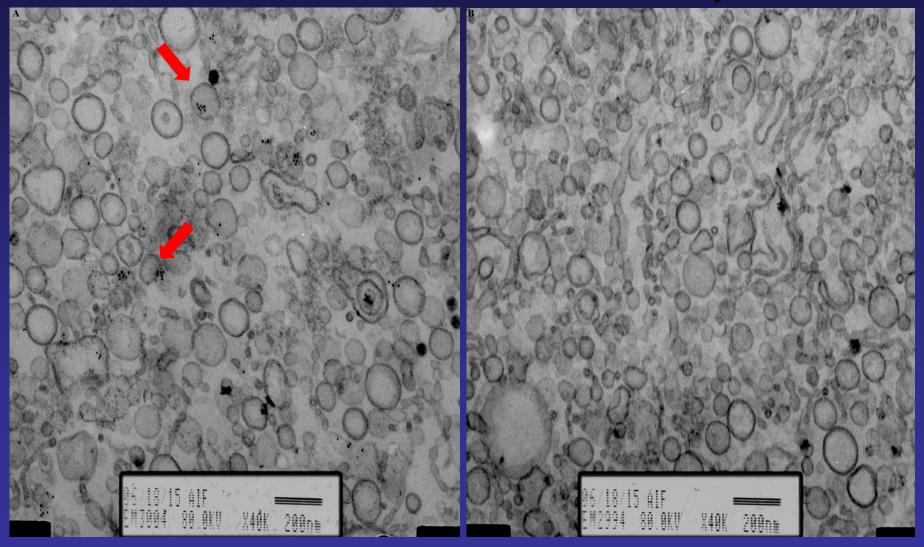
 1.54 ± 0.02

Yes

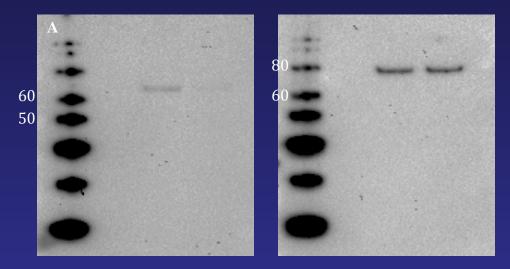

Yes

Bernal, et al JBC 285: 24055

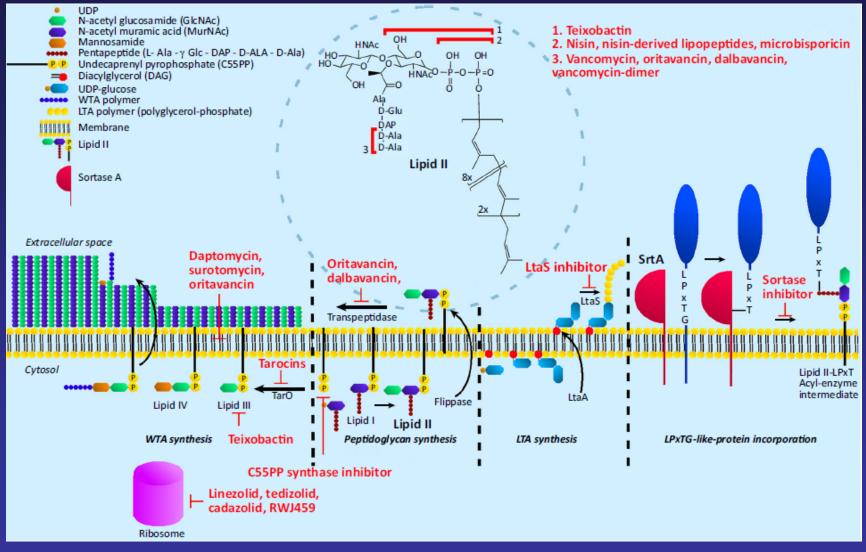
Gram-positive vesicles


Gram-positive Bacterial Extracellular Vesicles

В


Kim, et al (2015) Se, Cell Dev Biol 10: 97

Microvesicles and Pbp5


Immuno EM. C68-derived vesicles. A) Rabbit anti-Pbp5. B) Rabbit anti isotype. Red arrows show stain.

E. faecium Microvesicle Content

Western blot of vesicles isolated from clinical *E. faecium* strain C68. Lane 1: Size standard (KDa); lane 2: empty, lane 3: C68 MV, lane 4: C68 + PenG EMB. A) Rabbit anti-P₅AP. B) Rabbit anti-Pbp5

Newer Enterococcal Targets

Van Harten and colleagues (2017) Trends Microbiol 25: 467

- Bacterial cell wall synthesis occurs through the coordinated actions of several different proteins
- PBPs are the most prominent and the ones for whom we have lethal inhibitors
- Understanding the interactions of the different proteins with each other and with the membrane to which many of them are attached will give us a deeper understanding of microbial physiology and may identify new lethal targets