

Margaret Cheung, PhD

Department of Physics, University of Houston

Molecular Underpinnings of Postsynaptic Calmodulin-dependent Calcium Signaling

Abstract:

Calcium (Ca²⁺) signaling is a dynamic system where Ca²⁺ concentration fluctuates in range of 0.1-10μM with time (4). These short transient Ca²⁺ around the entry sites activate Ca²⁺-binding proteins such as calmodulin (CaM). The prototypical pathway describes CaM as encoding a Ca²⁺ signal by selectively activating downstream CaM-dependent proteins through molecular binding. However, CaM's intrinsic Ca²⁺-binding properties alone appear insufficient to decode rapidly fluctuating Ca²⁺ signals. It has been proposed that the temporally varying mechanism for producing target selectivity requires CaM-target interactions that directly tune the Ca²⁺-binding properties of CaM through reciprocal interactions. In this presentation, I will focus on the binding mechanism of CaM and its target, which requires mutually and conformationallyinduced changes in both participants Then, I will focus on two unique and distinct CaM binding targets, neurogranin (Ng) and CaM-dependent kinase II (CaMKII), which are abundant in postsynaptic neuronal cells and are biochemically known to tune CaM's affinity for Ca²⁺ in opposite directions. My group has employed an integrative approach of quantum mechanical calculations, all-atomistic molecular dynamics, and coarse-grained molecular simulations to investigate the molecular mechanisms of CaM's reciprocal interaction between target binding and Ca²⁺binding. The research of my group has been driven and tested in close collaboration with experimentalists. I will also discuss CaM binding and target selection in the context of evolution and in a crowded environment.

Keck Seminar

Friday, Sept 7, 4pm

BioScience Research Collaborative

Room 280 (2nd Floor)

The Gulf Coast Consortia is a collaboration of:

Rice University | Baylor College of Medicine | University of Houston | University of Texas Health Science Center at Houston University of Texas Medical Branch at Galveston | University of Texas MD Anderson Cancer Center Institute of Biosciences & Technology at Texas A&M Health Science Center | quifcoastconsortia.org